Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Sathiya Moorthi,^a K. Chinnakali,^b* S. Nanjundan,^c S. Radhakrishnanan^d and Hoong-Kun Fun^e*

^aDepartment of Physics, Sri Muthukumaran Institute of Technology, Chikkarayapuram, Chennai 600 069, India, ^bDepartment of Physics, Anna University, Chennai 600 025, India, ^cDepartment of Chemistry, Anna University, Chennai 600 025, India, ^dDepartment of Chemistry, Government Arts College, Ootacamund 643 001, India, and ^eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.035 wR factor = 0.096 Data-to-parameter ratio = 32.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

3-(3-Bromophenyl)-1-(2-naphthyl)prop-2-en-1-one

The title molecule, $C_{19}H_{13}BrO$, has an *s*-*cis* conformation for the ketone system. The dihedral angle between the benzene and naphthalene ring systems is 50.14 (3)°. C-H···Br interactions link the molecules into chains along the *c* axis, which are interlinked *via* C-H··· π interactions.

Received 26 December 2006 Accepted 9 January 2007

Comment

Chalcones, 1,3-diphenyl-1-propan-3-one derivatives, have a wide range of biological properties, including anticancer (Achanta *et al.*, 2006; Kim, Choi *et al.*, 2006), antiproliferative (Hsu *et al.*, 2006), antimalarial (Wirasathien *et al.*, 2006), antiinflammatory (Anuradha *et al.*, 2006), anti-allergic (Daikonya *et al.*, 2004) and antagonist (Kim, Kim *et al.*, 2006). Chalcones exhibit inhibitory activity against nitric oxide production (Han *et al.*, 2006), dengue 2 virus NS3 protease (Kiat *et al.*, 2006) and tyrosinase (Khatib *et al.*, 2005). Some chalcone derivatives exhibit nonlinear optical properties (Gao & Ng, 2006; Patil *et al.*, 2006*a,b*). As part of our studies of chalcone derivatives, the title compound, (I), has been synthesized and its crystal structure is reported here.

The molecule of (I) assumes an *s*-*cis* conformation for the ketone system, as evidenced by the torsion angle O1-C9-C8-C7 = 22.2 (2)° (Fig. 1). Similar values of -19.4 (6), -21.4 (3) and 14.9 (2)° were observed for 1-(2-naphthyl)-3-(4nitrophenyl)prop-2-en-1-one, (II) (Raj *et al.*, 1996), 3-(2chlorophenyl)-1-(2-naphthyl)prop-2-en-1-one, (III) (Kumaran *et al.*, 1996), and 3-(4-methylphenyl)-1-(2-naphthyl)prop-2-en-1-one, (IV) (Moorthi *et al.*, 2005), respectively. Atoms C7-C9 and O1 of the enone group are coplanar, with an r.m.s deviation of 0.071 Å. The mean plane through the enone group makes dihedral angles of 27.08 (5) and 23.06 (6)° with the benzene and naphthalene ring systems, respectively. The dihedral angle between the benzene and naphthalene ring systems is 50.14 (3)°.

Bond lengths and angles in (I) are comparable with those reported for (II), (III) and (IV). As observed in (IV), the short H5···H8 contact (2.27 Å) causes the bond angles C5–C6– C7 [122.94 (13)°] and C6–C7–C8 [126.53 (13)°] to deviate significantly from 120°, and the short H8···H11 contact

Figure 1

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 80% probability level.

(2.25 Å) results in a slight widening of the C9–C10–C11 angle [121.68 (13)°].

In the crystal packing of (I), molecules related by translation along the *c* axis are linked to form a chain *via* $C-H\cdots Br$ interactions (Table 1). Centrosymmetrically related molecules in adjacent chains are interconnected through $C-H\cdots \pi$ interactions, involving the C13–C18 (centroid *Cg*1) and C1–C6 (centroid *Cg*2) benzene rings, into a three-dimensional framework (Fig. 2 and Table 1).

Experimental

The title compound was obtained by the Claisen–Schmidt condensation of 2'-acetonaphthone (5.10 g, 0.03 mol) and 3-bromobenzaldehyde (5.55 g, 0.03 mol) in ethanol (25 ml) in the presence of aqueous NaOH (10%). The product was isolated by filtration and washed with dilute hydrochloric acid to neutralize the alkali. It was then washed with distilled water and cold ethanol. The crude product was recrystallized from a solution in ethanol–chloroform (1:1 ν/ν).

Crystal data

C ₁₉ H ₁₃ BrO	V = 711.96 (2) Å ³
$M_r = 337.20$	Z = 2
Triclinic, P1	$D_x = 1.573 \text{ Mg m}^{-3}$
a = 5.8213 (1) Å	Mo $K\alpha$ radiation
b = 7.3549 (1) Å	$\mu = 2.88 \text{ mm}^{-1}$
c = 16.7023 (3) Å	T = 100.0 (1) K
$\alpha = 88.199 \ (1)^{\circ}$	Block, colourless
$\beta = 84.947 \ (1)^{\circ}$	$0.59 \times 0.56 \times 0.22 \text{ mm}$
$\gamma = 89.454 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.213, T_{\max} = 0.530$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 1.066221 reflections 190 parameters H-atom parameters constrained 19651 measured reflections 6221 independent reflections 5288 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 35.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 \\ &+ 0.4791P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 1.60 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.66 \ e \ \text{\AA}^{-3} \end{split}$$

Figure 2

A packing diagram for (I), viewed down the *a* axis. Dashed and dotted lines represent $C-H\cdots Br$ and $C-H\cdots \pi$ interactions, respectively.

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13–C18 benzene ring and Cg2 is the centroid of the C1–C6 benzene ring.

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C15-H15\cdots Br1^{i}$	0.95	2.93	3.5552 (16)	125
$C1 - H1 \cdots Cg1^{ii}$	0.95	2.85	3.5236 (15)	129
$C4-H4\cdots Cg1^{iii}$	0.95	2.84	3.5012 (15)	128
$C14-H14\cdots Cg2^{iv}$	0.95	2.82	3.5274 (17)	132
$C17-H17\cdots Cg2^{v}$	0.95	2.75	3.4772 (17)	134

Symmetry codes: (i) x, y, z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x, -y, -z + 1.

H atoms were positioned geometrically, with C-H = 0.95 Å, and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron-density peak is located 0.71 Å from atom Br1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No. 304/PFIZIK/635028.

References

- Achanta, G., Modzelewska, A., Feng, L., Khan, S. R. & Huang, P. (2006). Mol. Pharmacol. 70, 426–433.
- Anuradha, V., Srinivas, P. V., Ranga Rao, R., Manjulatha, K., Purohit, M. G. & Madhusudana Rao, J. (2006). *Bioorg. Med. Chem.* 14, 6820–6826.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Daikonya, A., Katsuki, S. & Kitanaka, S. (2004). Chem. Pharm. Bull. (Tokyo), 52, 1326–1329.
- Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, 03610-03611.
- Han, A. R., Kang, Y. J., Windono, T., Lee, S. K. & Seo, E. K. (2006). J. Nat. Prod. 69, 719–721.
- Hsu, Y. L., Kuo, P. L., Tzeng, W. S. & Lin, C. C. (2006). Food Chem. Toxicol. 44, 704–713.
- Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.
- Kiat, T. S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N. & Rahman, N. A. (2006). *Bioorg. Med. Chem. Lett.* 16, 3337–3340.
- Kim, D. C., Choi, S. Y., Kim, S. H., Yun, B. S., Yoo, I. D., Reddy, N. R., Yoon, H. S. & Kim, K. T. (2006). *Mol. Pharmacol.* **70**, 493–500.
- Kim, D. Y., Kim, K. H., Kim, N. D., Lee, K. Y., Han, C. K., Yoon, J. H., Moon, S. K., Lee, S. S. & Seong, B. L. (2006). J. Med. Chem. 49, 5664–5670.

- Kumaran, D., Eswaramoorthy, S., Ponnuswamy, M. N., Raju, K. S. & Nanjundan, S. (1996). Acta Cryst. C52, 2543–2545.
- Moorthi, S. S., Chinnakali, K., Nanjundan, S., Balaji, R. & Fun, H.-K. (2005). *Acta Cryst.* E**61**, 03885–03887.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, 0896–0898.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, 01710-01712.
- Raj, S. S. S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1996). Acta Cryst. C52, 3145–3146.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wirasathien, L., Pengsuparp, T., Moriyasu, M., Kawanishi, K. & Suttisri, R. (2006). Arch. Pharm. Res. 29, 497–502.